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Abstract 
 

Recent research conducted under NASA LaRC's Creativity and Innovation Program 
has led to the development of an initial approach for a hierarchical fracture mechanics. 
This methodology unites failure mechanisms occurring at different length scales and 
provides a framework for a physics-based theory of fracture. At the nanoscale, 
parametric molecular dynamic simulations are used to compute the energy associated 
with atomic level failure mechanisms. This information is used in a mesoscale 
percolation model of defect coalescence to obtain statistics of fracture paths and energies 
through Monte Carlo simulations. The mathematical structure of predicted crack paths is 
described using concepts of fractal geometry. The non-integer fractal dimension relates 
geometric and energy measures between meso- and macroscales. For illustration, a 
fractal-based continuum strain energy release rate is derived for inter- and 
transgranular fracture in polycrystalline metals.   
 
Keywords: fracture mechanics, strain energy release rate, fractal geometry 
 
1.0  Introduction 

 
 Classical Fracture Mechanics is based on a continuum description of material 
domains and fracture behavior described in terms of empirical parameters such as critical 
strain energy release (GC), resistance curves (J-R), and crack tip opening angles (CTOA), 
etc.  Advances in computer systems are making it increasingly possible to study the 
behavior of materials using computational methods that simulate the interaction and 
evolution of defects in atomic ensembles under applied loads. These analyses simulate 
fundamental material processes using first principles in physics and provide an ultimate 
understanding of deformation and fracture at the atomic level. A hierarchical description 
of fracture can be modeled using fractal concepts that naturally permit transitioning 
between length scales. This modeling of fracture is based on the observation that crack 
paths and fracture surfaces exhibit fractal characteristics of self-similarity over a range of 
length scales. Geometric self-similarity asserts that topologically congruent or equivalent 
features exist at each dimensional scale and implies that the atomic scale may be directly 
related to the macroscopic continuum scale through a fractal description. The 
transformation of information of the underlying physics of crack growth across length 
scales has the potential of dramatically reducing empiricism in the description of fracture 
and may be considered a new approach to fracture mechanics.  
 

The ultimate goal of the present research is to develop a unified framework in which 
classical continuum fracture parameters are replaced with fractal definitions to provide 
scale-independent ‘true’ material constants. For this initial effort, this framework seeks to 
combine different computational methods and geometrical descriptions across 
dimensional scales to incorporate atomistic failure mechanisms within the definition of 
macroscopic fracture measures. A fractal description of geometry yields a formalism in 
which the actual length of a crack and the true area of fracture surfaces can be 
represented. Various features of crack propagation such as crack path length, branching 
and consolidation may be simulated using a variety of fractal methods. The energetics of 



 

 2

nanoscale fracture mechanisms can be calculated using molecular dynamic (MD) 
simulation methods and can be scaled in an implicitly bottom-up approach within a 
hierarchical fracture mechanics paradigm. 
 

This report is divided into two parts. The first part details issues related to the 
theoretical formulation of a new approach to fracture mechanics wherein basic 
definitions, mathematical modeling approaches, and material systems are discussed. A 
fractal-based continuum strain energy release rate is defined. The second part describes a 
practical implementation of the developed theoretical formulation in which damage 
mechanisms are related over length scales. Illustrative simulation results are presented 
and future research directions are discussed in the conclusion.    

 
2.0  Theoretical Development 
 

The following subsections discuss fracture mechanics issues related to the 
hierarchical analysis of polycrystalline metals. These include a description of a 
hierarchical fracture analysis, brittle and ductile material fracture behavior, and the 
energetics of fracture. An introduction to fractal geometry is detailed which provides a 
scale-independent approach for defining a strain energy release rate based on atomistic 
simulation of fundamental  fracture mechanisms that can be converted to a macroscopic 
definition. 
   
2.1  Overview of a Hierarchical Fracture Mechanics Approach 
 

The overall theoretical framework consists of developing a hierarchical methodology 
to simulate and link fracture phenomena exhibited at different characteristic length scales. 
At the nanoscale (10-9m - 10-7m), computations involve atomistic simulation of voids, 
pores, intergranular and transgranular, and dislocation formation, while accounting for 
grain size, orientation and boundary characteristics. For transitioning to the mesoscale 
(10-7m - 10-5m), a continuum model of polycrystalline grain configurations is developed 
to simulate realistic cracks from which fracture statistics are generated. Material-specific 
grain configurations are generated through Monte Carlo simulations and the response of 
the model under applied loads is calculated using a discrete finite element procedure. 
Material properties used in this model are obtained from parametric studies of grain 
deformation and grain boundary response using atomistic analysis. Three important 
calculations are performed using the mesoscale continuum model: (i) Failure progression 
caused by the development and coalescence of defects; (ii) the computation of statistical 
characteristics of fracture such as number of crack segments, orientation of crack paths, 
and lengths; and (iii) the development of probability density functions for grain boundary 
misorientation angles and grain boundary orientation with respect to far-field applied 
loads. The fractal properties of cracks are modeled by introducing spatial distribution 
functions that represent the geometrical aspects characterizing fracture surfaces and allow 
an accurate integration of energies along these rough surfaces. The separation energy 
density is integrated using the statistical characterizations of the mesostructure and the 
spatial distribution functions. The fractal dimension of the fracture surface provides a 
scale factor resulting in a total energy measure valid at the macroscale (10-3m – 100m).  
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2.2  Hierarchical Fracture Processes across Length Scales 

 

Classical theory defines three fundamental modes of fracture based on macroscopic 
relative displacement profiles which are depicted in Figure 1. However, small-scale 
failure mechanisms operating within the process zone around the crack tip generate 
complex local deformation fields that preclude simple descriptions. While providing a 
basis for categorizing continuum fracture, each macroscopic mode of fracture will 
typically involve all three relative deformation modes locally within the process zone at 
the microscale. These deformation modes consist of a hierarchy of self-similar fracture 
mechanisms occurring at different length scales contributing to the evolving deformation 
state. Thus, the fundamental notion of distinct modes used in classical fracture mechanics 
becomes ill-defined when smaller-scale processes are accounted in a hierarchical 
analysis. The lowermost length scale is on the order of nanometers and defines the realm 
of atomistic interactions at which all material failure phenomena originates.  This 
hierarchy of length scales for a polycrystalline metal is depicted in Figure 2.  
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 1. Fundamental fracture modes in solids. 
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      Figure 2. Fracture processes at different length scales. 
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Experimentally determined fracture parameters measure a homogenization of many 
failure mechanisms operating at different length scales. These fracture mechanisms 
include nanoscopic dislocation formation and interaction, voids, pores, precipitation 
aggregates, mesoscale intergranular and transgranular cleavage, and macroscopic fracture 
surface development and propagation.   

 
The granular structure of a metallic material is responsible for many of its 

fundamental properties. As materials undergo work, initial defects enlarge and new 
defects are created. Of particular interest are nanoscopic failure processes that coalesce 
into microcracks that develop further into large-scale cracks causing loss of structural 
integrity or catastrophic material failure. Some of these cracks may consist exclusively of 
intergranular decohesion along grain boundaries, while others may include predominantly 
transgranular fracture though the grains.  For brittle materials, the energy that it takes to 
break a material typically depends on the total extent of intergranular fracture surface that 
is formed.  
 

The hallmark of current fracture mechanics has been the integration of experimental 
measurements of fracture, such as toughness and fatigue crack growth rates, within a 
theoretical framework [1]. This framework, however, typically assumes a 
phenomenological approach that is empirical in nature. In addition, the restriction of 
using integer Euclidean dimensions for defining length and area measures of fracture 
geometry results in assumed geometric descriptions that possess little relation to actual 
crack paths and the geometric texture of fracture surfaces. Atomistic simulation of 
fundamental failure processes combined with fractal descriptions of fracture geometry 
allows the theory of fracture to be extended by incorporating mechanisms that operate at 
different length scales [2, 3].  
  
2.3  Brittle versus Ductile Failure Processes 

 
The dominant energy consumption in the fracture of brittle materials is associated 

with the creation of fracture surfaces within the solid [4]. In polycrystalline metals, brittle 
failure involves primarily the separation energy of grain boundary interfaces with little 
contribution from work due to plastic deformation within grains. In ductile materials, 
however, the energy associated with plastic deformation becomes predominant. For both 
types of materials it may be assumed that nanoscopic defects are scattered randomly 
throughout the material region and undergo coalescence. Within this field of defects, the 
local intensification of nanostresses enhances the coalescence of nanodefects, ultimately 
converging into a sparse distribution of larger cracks that tend to consume a majority of 
the input energy. The extent of these cracks fall into the ‘small-crack’ regime wherein the 
crack length, lc, is bounded by mm1lm100 c ≤≤µ . At this length scale, the crack is 
influenced by a surrounding heterogeneous microstructural state but can be approximated 
by continuum modeling approaches. As ‘small-cracks’ coalesce, dominant cracks 
develop in ductile materials and the local stress intensity leads to the development of a 
large surrounding plastic region. As local yield stresses are exceeded at the atomic level, 
initial ‘easy glide’ dislocations develop on various available glide planes. With increasing 
strain, the interaction of slip systems on different glide planes becomes increasingly 
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complex and dictates the nature of overall plastic deformation within grains. The 
presence of various forms of locking in interacting dislocation systems typically harden a 
material such that further deformation cannot be accommodated through the movement 
of dislocations, thus leading to local failure. These phenomena need to be characterized 
statistically and incorporated into the current model.  

 
The overall crack path will be determined by the pattern of propagation along 

minimum energy paths in the process zone which typically exhibits fractal characteristics. 
Various models of grain deformation such as strain gradient plasticity [5] may prove 
ideally suited for simulating ductile material response at mesoscopic length scales. The 
current hierarchical model is limited to brittle failure but incorporates a mesoscale 
continuum model that can be enhanced to include plasticity. This extension of the present 
analysis to model ductile material behavior is a topic for future research. 
  
2.4  Mathematics of Fractal Geometry  
 

Fractal geometry was originally developed by Mandelbrot [6] and has matured into a 
broad area of mathematics [7, 8]. These geometric concepts provide a rigorous 
representation of irregular yet structured patterns of natural phenomena exhibited over a 
sequence of length scales. Fractal geometries are generated iteratively and possess an 
extent that is dependent on the length scale at which segments are measured. For 
applications to fracture mechanics, the fractal properties of self-similarity, self-affinity, 
and multifractality are of particular utility in rigorously defining the texture of crack 
geometry that exist at different dimensional scales. Figure 3 shows examples of the 
iterative generation of fractals that provides an intuitive understanding to the concept of 
self-similarity. The construction consists of replacing a repeating unit of the geometry 
with a scaled representation of the overall pattern following a scheme known as a 
generator. For the Box Fractal, each solid square is replaced by a configuration of five 
smaller squares with missing spaces as shown. The Seirpinski Sieve Fractal is formed by 
recursively replacing each equilateral triangle with three smaller triangles with a missing 
triangle in the center. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b) Sierpinski Sieve Fractal 

 

 

a) Box Fractal

Figure 3. Examples of geometric transformations yielding fractals.  
               (http://mathworld.wolfram.com/Fractal.html) 
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Self-affinity is related to self-similarity, differing only in a greater freedom by scaling 
the geometry unequally at each iteration of the generator in creating the fractal geometry. 
Multifractility refers to another increase in modeling freedom by allowing different 
generators to operate at different dimensional length scales. 

 
The operations used to generate the fractals in Figure 3 can be expressed rigorously in 

terms of linear transformations that define how one characteristic shape or generator can 
be mapped between geometric iterations. In two-dimensions, the linear transformation 
corresponding to the generation of a self-similar fractal object between the ith and (i+1)st 
iteration may be described as 
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where λ and β are stretching and translation parameters, respectively. This transformation 
generates a geometrically isotropic fractal where features are identical in both the x1 and 
x2 coordinates. A related construction yields a fractal with the property of self-affinity. 
This transformation is given by 
 

                                      







β
β

+
















λλ
λλ

=








+

+

2

1
)i(

2

)i(
1

2221

1211
)1i(

2

)1i(
1

x
x

x
x

                                          (2) 

 
which contains different scale factors for x1 and x2, leading to a general directional 
dependence or anisotropy of the fractal object. A more general geometry exhibiting 
multifractility can be given as a sequence of linear transformations such as Equations (1) 
and (2) with mapping parameters that change with the iteration index i. 

 
Figure 4 shows two variations of a self-similar fractal known as the Koch Curve [8]. 

This curve has a direct application to modeling two-dimensional crack paths and shows 
how the geometry can be modified through the construction rules. The construction 
begins with an initiator of length Lo shown at the top of Figure 4 which is then 
recursively modified by replacing each straight segment by the pattern of the generator. 
For the Basic Koch Curve, each iteration, n, replaces a straight segment by four smaller 
segments. Thus, at the nth iteration, the total number of straight segments, Nn, is equal to 
4n. Because the distance between the endpoints of the initiator is kept constant, the new 
segment lengths, εn, are equal to Lo/3n.  For the Modified Koch Curve, the generator is 
more complex such that at each iteration, Nn is equal to 6, and εn is equal to 
Lo/[2+4Sin(α/2)]. As shown graphically in the figure, modifications to the generator have 
a profound effect on the resulting fractal. While the Basic Koch Curve clearly shows self-
similar features with increasing refinement, the self-similarity of the Modified Koch 
Curve is only discerned under scrutiny and the resulting geometry of the curve begins to 
display a distinctly ‘crack-like’ appearance. 

 
The product of the number of segments and the segment length yields a fundamental 

relationship for self-similar fractals that can be expressed as: 
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                                                       ( ) .constN D
nn =ε×ε                                                     (3) 

 
where D is a fractional exponent that is a fundamental characteristic of the fractal. 
Arbitrary values of D cause the product to converge to zero or infinity; the value that 
yields a constant product uniquely determines this exponent and is referred to as the 
Hausdorff dimension of the fractal [7]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
A manipulation of Equation (3) yields an expression for the total length, Ln, at the nth 

iteration of the fractal given by 
 
                                                          D1

n
D
on LL −ε=                                                            (4) 

   
A distinction can be made between mathematical and physical fractals. In a 

mathematical fractal, the iterations continue indefinitely such that the resulting geometry 
is nonrectifiable (indeterminate length) and nondifferentiable at every point. In 
application to fracture mechanics, however, physical fractals are defined using a 
minimum bounding length scale which eliminates the infinite descent of geometric 
features along the fractal curve.  
 

The maximum feature length is the macroscopic scale where the fracture surface is 
projected onto a flat surface, and the smallest scale, ε, corresponds to the smallest 
physical crack feature such as a characteristic grain boundary length or an interatomic 
spacing. The disparity between Euclidian measures of crack extension and fractal 
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measures can be significant. For example, if we look at the length magnification of the 
modified Koch curve, taking o30=α  and a characteristic length of 0.0358 times the 
length of the initiator (taken as unity here), one obtains a fractal dimension of 1.6138 and, 
from Equation (4), a length magnification of 7.733. Thus, utilizing a more realistic 
geometry for surface texture, the total area of fracture surface creation is highly increased 
compared to simple smooth crack geometry assumptions. 
 

To determine fractal dimensions of fracture surfaces from experimental data, such as 
fractographic imaging, various methods may be applied. These methods include slit 
island analysis (SIA) [9], fracture profile analysis (FPA) based on a Fourier analysis of 
the fracture surface [10,11], vertical section method (VSM), and box counting or 
variation method [12]. Experimental errors in determining fractal dimensions can be 
significant.  However, in the present analysis, fractal dimensions are determined using an 
intermediate mesoscale model. This continuum model incorporates the basic physics of 
grain formation and stability and defect distribution from which statistically valid fractal 
dimensions can be determined from a Monte Carlo simulation.  
 

In the present analysis, the Hausdorff dimension D is obtained using a variation of the 
box counting method. This approach is based on the measurement approach of counting 
the number of boxes, circles or spheres required to ‘cover’ a fractal object at various 
length scales. This is obtained from Equation (3) by setting the arbitrary constant to unity 
such that: 
                                         ( ) ( )ii

D
ii LogNLogDorN ε−=ε= −                                      (5) 

 
where εi is a characteristic size of the covers and Ni is the number of covers that are 
intersected by the fractal object. The covering procedure is depicted in Figure 5 where Ri 
= εi /2, and the fractal dimension is determined from Equation (5) by computing the slope 
of a log-log plot of measurements shown in Figure 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Covering method for determining 
                fractal dimension. 
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2.5  Fractal Characteristics of Fracture 

 
A fundamental observation regarding material fracture is that the geometry of crack 

paths, crack fronts, and surface texture demonstrate fractal characteristics [13,14]. Thus, 
fracture measurements do not generally possess a linear scaling behavior and, instead, 
exhibit a size dependence [15]. This means that if an experiment is performed for a 
specimen of 1 cm in length, the result may not apply to a specimen of 1 micron in length. 
In general, fracture can exhibit ranges in which the fractal dimension changes due to 
different scale-dependent fracture mechanisms which give rise to multifractal and multi-
affine models. It has also been observed that certain materials possess regions at higher 
length scales at which the fractality disappears and the fractional dimension is replaced 
by an integer Euclidean measure thus eliminating size dependence. 
 

In practice, naturally occurring fractal objects are typically irregular to various 
degrees but may still be characterized as self-similar in a statistical sense. Self-similarity 
is required for a Hausdorff dimension to be uniquely defined, however, numerous other 
fractal constructs exist which may be used in the context of more involved fractal 
constructs such as self-affinity and multifractals. These representations involve 
transformations that can be generally anisotropic with fractal dimensions that can vary 
between levels of fractal generation. Examples of fracture processes exhibiting fractal 
characteristics are presented in Figure 7. 

 
Fractal descriptions can be used for many of the processes of failure at the mesoscale 

level. Crack branching, front development, surface generation, void coalescence, 
dislocation interactions, and the irreversible deformation of material domains can all be 
cast as fractal processes and quantified with suitable fractal representations.  
 
 

 

D

Log(Ni) 

Log(εi)

Figure 6. Linear regression fit to determine 
                fractal dimension D. 
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In classical fracture mechanics, simplified formulae for strain energy release rates 

utilize a fracture surface area based on integer dimensions. This assumes that the fracture 
surface is smooth, and its area is simply a product of a length and width.  Real fracture 
surfaces, however, are generally rough or textured, and a Euclidean measure of surface 
area leads to an incorrect estimate of quantities such as critical strain energy release rate 
(fracture toughness) based on the creation of new surface area. The main problem is that 
classical descriptions of material geometry and failure processes are based entirely on 
integer or Euclidean dimensions for length and surface metrics to define fracture 
parameters. This has contributed to the common observation that theoretical predictions 
of critical strain energy release rates are orders of magnitude below experimentally 
measured values. The underlying geometry of fracture is, however, generally non-
Euclidean and is more accurately described by self-similar or self-affine fractal geometric 
measures possessing non-integer fractal dimensions. Thus, classical measures fail to 

Crack surface:  
FRASTA:  http://www.sri.com/ 

Orientation Imaging: 
http://www.unibas.ch/earth/micro/pictures Grain boundary structure: Al2O3: 

 http://www.cmu.edu/mrsec/ 

        Intergranular crack formation 

               Figure 7: Geometry of grain boundaries and fracture [16]. 
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capture the microstructure of a fracture surface and the effective area relevant to energy 
calculations.  
 

Previous investigations have been published in which fractal geometry constructs 
have been directly incorporated into classical continuum definitions of fracture 
mechanics, and has led to redefinitions of stress intensities and the introduction of ‘new’ 
fracture modes [17-19]. For example, incorporating fractal geometry into the expression 
for the classical crack tip stress field associated with Mode I fracture yields 
 

                                                   ( ) ( )θϕ=θσ
−
2

2D

Iij rK,r                                                   (6) 
 
in which KI is the stress intensity factor and ϕ(θ) gives the spatial variation in the stress 
field around the crack tip. This expression recovers the 2/1r − singular behavior for a 
smooth crack when D = 1. The primary effect of this altered geometric description is to 
lower the strength of the stress singularity. While attempting to account for the fine 
structure of fracture geometry, these approaches neglect any refinement in modeling the 
physics of fracture mechanisms. In addition, the application of mathematical fractals with 
infinite levels of feature generation leads to non-physical difficulties such as the lack of 
rectifiability of line segments because all segments theoretically have an infinite extent 
and the impossibility of defining surface normals due to the non-differentiability of the 
fractal curve. In the present research, the use of infinitely descending fractals is avoided 
because the fractal nature of fracture in solids is physically bounded, and the smallest 
scale cannot be less than the interatomic spacing of atoms in a crystal or amorphous solid. 
Although useful in the framework of classical fracture mechanics, stress singularities 
have no physical meaning at atomic length scales. The minimum fractal feature 
characteristics place a limit on the extent of generation of fine structure in fractal 
constructs. This limits the geometric complexity along any segment of a fractal curve and 
permits a statistical approach to be used in defining surface normal vectors. 
 

Three different independent quantities are needed to define the energetics of fracture. 
One quantity is the energy of fracture formation that depends on the type of surface that 
is formed, whether it is a grain boundary surface or a surface inside a gain. This is 
important because each type of fracture surface consumes different energy per unit of 
surface area created. For intergranular fracture, the energy is dependent on the strength of 
the boundary between two grains which can be associated with the number of coincident 
lattice sites occupied. The next important factor to include is a statistical description of 
the crack surface characteristics such as relative orientation to external applied loads. 
Finally, the geometrical aspects of fracture surfaces need to be accurately accounted for, 
which involve the fractal character of fracture processes.  
 
2.6  Energetics of Fracture 
 

In order to estimate the energy required to separate a surface along a grain boundary 
or slip plane, we need to express the total binding energy as an integral along the surface 
to be separated. Such a surface will have certain grain or crystallographic parameters that 
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describe it. For example, these nanostructural parameters include grain orientation, 
mismatch angle and order of coincident lattice sites when dealing with an intergranular 
crack, and the orientation and initiation of crystal slip systems when dealing with 
transgranular fracture surfaces, etc. The values of these parameters may be defined as a 
function of the normal to the surface of the crack. The orientation of the surface normal is 
denoted by the variable ξ, and the separation energy density for the various parameters is 
given by the function g(ξ). Let A be the total fracture surface to be created during some 
spatial increment using a local area coordinate, a, along the fractal surface. The 
orientation of the normal is, in turn, a function of the area coordinate such that ξ = ξ(a). 
We can then write the separation energy U for generating a unit area of fracture surface 
as the integral  
 

                                                         ( )[ ]∫ ξ= daag
A
1U                                                   (7) 

 
 

Classical fracture mechanics assumes that the surface is smooth and integration can 
then be defined by Riemann sums. Real cracks, however, are rough, and a reexamination 
of the concept of an integral for such surfaces is needed. In doing so, the normal at each 
segment of a rough surface and the individual area elements must be defined, and the 
overall integration process must be formulated. 
 

As a theoretical starting point, it is assumed that the rough surface can be described 
by infinitesimal area elements and that a normal to the differential surface can be defined. 
Consider the examples presented in Figure 8. In the case of a flat (classical) fracture 
surface, a single unit vector describes the normal to the surface and energy quantities can 
be integrated over the domain using classical limits. In the segmented curve case of 
Figure 8, there are three different slopes with three normal orientations that can be 
assumed to exist over the same area element. To treat this multiplicity mathematically, it 
is assumed that each normal appears with a certain probability. The way to describe it is 
in terms of a probability density function f(ξ). For the segmented curve, we can express 
the probability of normal orientation as  

 
                                    ( ) )()()(f 332211 ξ−ξδα+ξ−ξδα+ξ−ξδα=ξ                              (8) 
 
where δ is the Dirac delta function and αi are the relative frequencies of each normal 
orientation. The last case in Figure 8 shows a fractal-like surface where, for a 
mathematical fractal, the normal attains infinitely many values at each point and the 
probability density function becomes continuous. 
  

In mathematical language, the surface normals of typical cracks are not uniquely 
defined vectors associated with classical smooth functions, but may instead be described 
by formal measures [20]. For practical applications, these measures can be approximated 
while preserving the degree of accuracy in the overall integration of surface energetics. 
An intuitive understanding of the measures used here is provided by the use of 
probability distribution functions.  
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2.7  Integration on rough surfaces 
 

Assuming a crack path with a uniform extension in the thickness coordinate, the 
definition of an area element, ∆a, is based on an extension of Equation (3) yielding a 
relationship given by  
                                                        D)/a(a εδε=∆                                                          (9) 

 
where ∆a is the area of an oriented small surface element along the fractal curve, δa is the 
reflection of the oriented surface onto a flat plane, and ε is the smallest characteristic 
feature length of the fracture surface. This formula scales the classical area element, ∆a, 
to reflect the fact that the surface is not smooth but contains several scales of smaller 
features that cannot be neglected, as they contribute to a different effective area. For 
integration purposes, Equation (9) can be generalized to yield a formula for the area 
element that includes any number of scales, with different fractal characteristics, each 
spanning its own dimensional range. 
 

To integrate an energy density function as an infinitesimal quantity defined 
continuously along a rough surface, we need to know the relative occurrence in the form 
of a probability density function of the different values of the nanostructural parameter at 
each point. The probability density function f(ξ) associated with a particular parameter is 
used such that f(ξ)dξ is the probability of having a nanostructure parameter in the range 
(ξ, ξ + dξ). This quantity depends only on the surface geometry such as orientation, 
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    Figure 8. Fracture profiles with associated energy measures as a function of 
                   surface normal orientation and probability density functions. 
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mismatch angle, etc. Because the function g(ξ) is multivalued at each point in the 
domain, the function value in the limit as ∆a →  da is indefinite and the Riemann integral 
over the surface is not defined. Therefore, the way to integrate g(ξ) da is to perform an 
additional integration over the parameter space using the probability density function f(ξ). 
A formal measure of the value of the integrand at each point is obtained by integrating 
over all possible values of the energy function with its associated probability. The 
resulting correspondence in terms of measurement of energy density over a differential 
area element is given by  
 
                                                  ( )[ ] ( ) ( )∫ ξξξ⇔ξ dfgdadaag                                         (10) 
 

In the application to real fracture surfaces with bounded fine-structure, the 
assumption of infinitesimal features is no longer valid. This bound on computed 
quantities leads naturally to an approximation by sums. Therefore, Equation (10) is 
modified by assuming a piecewise constancy of a particular value of the structural 
parameter, jξ , each of which is associated with a small element area domain, ∆aj, and 
replacing the integral with a sum over the entire area domain A where the index j is 
associated with each individual area domain.  

 
Another necessary modification of the integration scheme involves applying the 

concept of measurement by condensing the sums of g(ξj) and ∆ai over all values of the 
index j into reduced sums over the number of unique values of the structural parameter 
indexed by the variable η. This yields an effective representative surface in which each 
condensed area element is associated with a relative frequency of multiple values for the 
energy density function. For example, the simplified density function given by Equation 
(8) referring to the segmented crack depicted in Figure 8, gives η = {0.3π, 0.6π, 0.9π}. 
Utilizing summation by parts we can derive a reduced sum over η  for the energy density 
as  
                                                           
    ( )[ ] ( ) ( ) ( ) ( ) ( )∑ ∑ ∑∑ ∑ ∑∫

η η=ξ ηη η=ξ
η∆η=∆η=∆η=∆ξ=ξ agagagagdaag

j:j
j

j
j

j:j
jjA

   (11)     

 
where ∆a(η) is the sum of all area elements, ∆aj, that correspond to a given value of the 
energy function, i.e. g(ξj) = g(η). The final sum in Equation (11) can then be expanded to 
introduce the relative frequency of ∆a(η) as 
 

                          ( ) ( ) ( ) ( ) ( ) ( ) ( ) afga
a
agag ∆ηη=η∆

















η∆
∆

η=η∆η ∑∑∑∑
η

η
ηη

               (12) 

 
The resulting sum over all η partial sums yields the total area given by 

 
                                                            ( )∑

η

η∆= aA                                                     (13) 
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and the probability density function )(ηf  for the ηth value of the energy density is given 
by 

                                                             ( ) ( )
( )∑

η
η∆

η∆
=η

a
af                                                   (14) 

 
This ratio represents the relative occurrences of ∆aη for which the nanostructural 

parameter ξη  attains a distinct value with respect to the local area, ∆a. Thus, we may now 
write the final relationship between the integrated value of the function g(ξ) over the 
physical domain, A, in terms of discretized measures as  
 
                                                ( )[ ] ( ) ( )∑∫

η
ηη=ξ fgAdaag

A
                                         (15) 

 
This yields a constructive way for obtaining the relative frequency of the value g(η) 

given in Equation (15). Thus, the integral of the energy density function with multivalued 
functions expressed in terms of probabilities is a directly computable quantity, obtained 
by a simple consideration of the surface geometry.  
 
2.8  Strain Energy Release Rate 
 

The application of these ideas can now be used to define a strain energy release rate. 
In the hierarchical model developed here, information must be combined across several 
dimensional scales. At the nanoscale, the complete material energetics defined by several 
nanostructural variables may be characterized by a multivariate separation energy density 
function, g[χι(ξ )], obtained from atomistic simulation. At mesoscale dimensions, the 
crack surface characterization may be described by a density function of relevant values 
of nanostrutural parameters, f[χι(ξ )]. The density function is obtained from a mesoscopic 
percolation model in which a sequence of random grain structures and crack propagation 
is repeatedly analyzed to accumulate the statistics of crack profiles causing material 
separation. The progression of a particular ‘realized’ crack through the material domain 
causing complete separation of the model is referred to as crack percolation. Performing 
meso-to-macroscale transformation of crack energy is accomplished by scaling using the 
fractal dimension that persists over several orders of magnitude. This scaling is expressed 
by an area definition given by 
 
                                                            ∫ −ε=

A
D1D

oAda                                                    (16) 
 
where Ao is the projection of the total fracture surface onto a flat plane. 
 

Putting all these together, the standard definition of strain energy release for a solid 
based on surface energy γs [4] and plastic deformation energy γp [21] given by   
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                                               ps
c

c 2
A
UG γ+γ=

∂
∂

=                                           (17) 

 
can be replaced with a definition that accounts for the fractal nature of the surface and 
atomistic mechanisms of energy consumption along the surface given by 
 
 

             
( )[ ]

( ) ( ) ( ) ( )∑∫∫
∫

=

−−−− ξξε=ξξξε=
ξ

==
N

1i
ii

1DD
o

1DD
o

A

A fgAdfgA
da

daag
gG            (18) 

 
 
where N is the number of unique values in the discrete spectrum of the nanostructural 
parameters. Equation (18) constitutes a replacement of the empirical definition of 
classical strain energy release by relating the probability density of nanoscale unit energy 
measures of fracture surface creation obtained by atomistic simulation to macroscopic 
length scales. This relationship is rigorously quantified by the use of the fractal 
dimension which constitutes a magnification factor that yields a true measure of created 
fracture surface areas. The present formulation is focused on brittle fracture in which γs is 
the predominant contributor to crack energetics. The treatment of dislocation mechanisms 
and associated energy dissipation contributing to the plastic work, γp, which predominate 
in the fracture of ductile materials remains a topic of future work. 
 
3.0  Practical Implementation 
 

A computational framework is introduced for incorporating the results of atomistic 
simulations into a mesoscopic percolation model of fracture in polycrystalline metals 
from which macroscopic fracture parameters can be predicted. 

 
The theoretical approach presented in Sections 2.0 to 2.8 for estimating strain energy 

release rate incorporates several physical and geometric quantities. Specifically, 
information is needed regarding separation energies, g(ξ), fracture characterization, f(ξ), 
and fractal dimension, D. To find a relation between g(ξ), f(ξ), and D, a mesoscopic 
simulation procedure is developed using a percolation model of crack formation and 
propagation.  
 
3.1  A Computational Framework 
 
In order to achieve a realistic estimate of macroscopic fracture parameters of interest, 
failure phenomena must be modeled over several dimensional scales.  Atomistic 
simulation can give realistic approximations of intergranular and transgranular separation 
energies at the nanoscale. These simulations need to be performed for the full spectrum 
of grain orientations, boundary mismatch angles, etc. such that the parameter space is 
fully sampled. At the grain level, the energy of grain boundary separation and dislocation 
evolution must be calculated as a result of mechanical and thermal stresses.  At the 
mesoscale level, a large network of grains needs to be modeled in order to simulate the 
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formation of complex crack structures. The result of these Monte Carlo-type simulations 
can then be applied to develop statistics of fracture formation and propagation.   
 
3.2  Atomistic Simulation of Fracture 
 

Nanoscale simulation of fracture phenomena is performed using molecular dynamic 
methods for calculating atomic trajectories and interaction energies [22,23]. Basic 
phenomena of intragranular dislocation formation and progression, and separation along 

grain boundaries can be simulated such that the relevant physical quantities of separation 
energy can be determined. These quantities are calculated for a range of parametric 
values that are then integrated using appropriate probabilistic distributions to obtain a 
statistical summation such as given by Equation (18). These simulations provide 
predictions of grain boundary strength based on relative angular orientation of adjacent 
grains and the energy consumed in the coalescence of voids in an idealized grain field. 
Typical atomistic simulations of grain boundary separation and the growth of a simulated 
void in an isotropic solid under applied loads are shown in Figures 10 and 11, 
respectively. Figure 10 shows the prediction of peak separation stress and energy of two 
grains of aluminum subjected to a normal applied opening displacement. The two grains 
have crystallographic orientations given by the Miller indices [100] and [310] which 
dictate the strength of the boundary region in the bicrystal. This simulation is an example 
of the parametric analyses that need to be performed to ascertain the boundary strength 

 Macroscopic Solid 

Dislocation

Nanoscale Atomistic Model 

Mesoscale Model of 
grain boundaries 

Figure 9. Computational regimes. 
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Figure 10: Atomistic simulation of separation between [100] and [310] planes of Al.

between grains of different relative orientation. These types of simulations can be used to 
predict the energetics of brittle intergranular fracture.  

 

 
Figure 11 shows the atomistic simulation of a void in an idealized microstructure 

being extended by applied displacements. The model consists of hexagonal grains of 
aluminum with missing grains representing the void. This model yields predictions of 
both the separation energy involving both intergranular and transgranular separation 
together with predictions of plastic deformation within grains. Because MD analysis 
records the behavior of every atom in the simulations, energy and deformation can be 
separated into elastic and plastic components for any group of atoms. An effective total 
energy of local defect propagation can also be calculated and used depending on the 
resolution of the continuum mesoscale model.    
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Atomistic simulation of deformation and separation of a 
                 void in an idealized microstructure. 

Void Idealized Microstructure Dislocation Growth Boundary Separation 
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The parametrically calculated energies of fracture formation obtained from 

nanoscopic models of atomistic mechanisms are used as input to a mesoscale model of 
fracture development. Computing crack propagation due to intergranular and 
transgranular fracture constitutes a general percolation sequence and, for that reason, the 
mesoscale representation is labeled a Percolation Model. The inputs to this model are 
grain structure, grain boundary strengths, and intergranular separation energy used to 
efficiently simulate a multitude of simulated fracture profiles for statistical interpretation. 
In the current study, mechanisms associated with plasticity are neglected.  
 
3.3  A Percolation Model of Crack Coalescence 
 

Percolation theory is one of the simplest models of a system containing random 
disorder [24]. Applied to the lowest-level continuum scale, percolation provides a 

framework that captures realistic crack 
formation, exhibiting correct material-
specific deformation processes and 
geometric properties. The result of this 
analysis is to predict the coalescence of 
defects and local failures leading to the 
progression of dominant cracks.  
 

In fracture processes, percolation is 
strictly associated with growth and 
coalescence of voids. If the interaction of 
voids were neglected, the resulting fractal 
dimension would be universal or invariant, 
which is generally not true. In the present 
analysis, initial voids and other defects are 
influenced by neighbors and do not yield a 

universal fractal dimension to describe coalescence 
behavior. The predicted percolation sequence of 
initial defects gives rise to the particular fractal 
characteristics of crack geometry.  

 
A finite element discretization of the domain is 

performed using hexagonal spring units as shown 
in Figure 13. The use of a spring model was 
selected as a proof-of-concept simplification to 
model an isotropic continuous medium containing 
weak boundaries. These boundaries correspond to 
the region of adjoining grains and can potentially 
separate to form local cracks. Crack surfaces in 
this model are defined orthogonal to the springs. 
Since metals are polycrystalline in most application, the granular structure is incorporated 
into the model. Grain stiffnesses and grain boundary strengths determined through the 

Figure 13. Unit hexagonal 
                  spring network. 

Figure 12. Coalescence of microcracks.
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atomistic simulations are input as effective spring properties. This simplified mesoscalae 
model is the first step towards a more computationally intense finite element 
representation using two- three-dimensional continuum element formulations and 
cohesive zone elements to model mixed-mode separation along boundaries [25].  
 

Simulations begin by establishing a realistic grain structure. This structure is obtained 
from a Monte Carlo simulation that incorporates grain boundary physics such as the 
Mullins equation of curvature driven growth, enforcement of the Herring condition at 
triple junctions, and von Neumann conditions for grain stability [26]. A sample of such 
grain configuration is shown in Figure 14. A uniform network of springs having 
hexagonal connectivity is projected onto the network of grains. Springs that cross a grain 
boundary are assigned spring constants representing the effective stiffness of the 
boundary. The spring model, therefore, does not represent individual atomistic 
interactions, but simulates an anisotropic mesoscale continuum based on aggregate 
atomic behavior.    

 
Initial flaws in the material are introduced at 

random positions according to a prescribed ratio. 
These flaws are represented in the model as 
broken springs, i.e., their spring constants are set 
to zero. The flaws may correspond to voids, 
pores, and nanoscale cracks, that may exist at 
both intergranular or transgranular sites. The 
diagram in Figure 15 shows a sample 
configuration with defects modeled by 
selectively deleting the corresponding springs.  
 
 
 

 

Figure 14. Simulated grain structure. 
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          Figure 15. Representation of imperfections in percolation model. 
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3.4  Illustrative Mesoscale Simulation Results 
  
 A hexagonal spring model shown in Figure 16 is used to simulate percolation due to 
the formation and development of cracks for a wide range of parameters in terms of 
initial defects, spring strengths, etc. A two-dimensional model is chosen with randomly 
distributed defects. The initial amount of damage (voids and separated boundaries) 
modeled by degraded springs was fixed at two percent of the total number of springs used 
to model the continuum. The model is clamped at one end and loaded by enforced 
displacements at the other end. Figures 17 through 21 show snapshots of simulations in 
which different distributions of initial defects are present. 
 
 The simulations are shown to predict single and multiple dominant crack formation 
and progression, island formation, and branching patterns. The fractal-like quality of the 
fracture surface is clearly captured in these simulations. The simulations are performed 
on domains with the same size and with the same percentage of defects.  The figures 
show successive images just before and after final fracture. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

                         Figure 17. Test no. 1: Frames 5 and 6. 

Figure 16. Initial model depicting grain structure and random imperfections 
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                      Figure 18. Test no. 2: Frames 12 and 13. 

          Figure 20. Test no. 4: Frames 5 and 7. 

                   Figure 19. Test no. 3: Frames 11 and 12. 
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All numerical tests were run using the same applied displacements and fixity 

boundary conditions. The models fractured at different elongation magnitudes showing 
that the variability in the fracture toughness due to random initial microcracks is large. 
This variability demonstrates the need for statistical interpretation of results which is 
unavailable from idealized classical models of fracture. This analysis constitutes a Monte 
Carlo simulation using the mesoscale model. The accumulated results yield the fractal 
dimensions of the fracture geometry together with the statistics required to integrate the 
underlying energy measures of crack formation. The energetics of fracture at the 
mesoscale are then scaled using the Hausdorff dimension of the assumed underlying 
fractal geometry to yield macroscopic estimates of strain energy release by applying 
Equation (18), derived in Section 2.8. 
 
4.0  Concluding Remarks 
  
An initial framework for a hierarchical fracture mechanics has been developed. The 
hierarchical model encompassing atomistic simulation, polycrystal fracture nucleation 
and growth, and fractal geometry characterization has been shown to be a viable 
approach for predicting strain energy release rates from first principles. Simulations need 
to account for flaw types and failure processes at the atomistic level to fully describe the 
mechanisms of fracture. Surface separation and plastic deformation energies can be 
obtained using current atomistic simulation methods. Interaction of damage growth 
mechanisms will require models with large atomic ensembles but mitigate the empiricism 
of experimentally determined fracture parameters. Mechanisms involving plasticity 
present an additional degree of complexity and need to be fully incorporated into the 
analysis through extension of the mesoscale percolation model. Finally, for a basic 
validation of the hierarchical analysis, predicted crack path characteristics, fracture 
surface geometry, and predicted values for fracture parameters need to be correlated with 
experimental results.  
 

Figure 21. Test no. 5: Frames 6 and 7. 
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